
	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 1

Certified
ScrumMaster
Course

Course Workbook

	

Scrum is a light-weight* framework* for
empirical control* of emergent systems*. It’s
easy to learn*, but difficult to master*.

* Defined/explained during the course

	

	

	
Version	2.1	

Name:

COURSE AGENDA
This	is	what	you	can	expect	to	see	during	these	two	days	(the	times	are	approximate):	

	 Day	1	 Day	2	
9	–	12	 Ball	Point	Game	/	Airplane	Game	

Agile	thinking	
Agile	principles	
	

ScrumMaster	role	in	detail	
Team	formation	

12	–	13	 Lunch	
13	–	17	 Complexity	and	its	effect	to	processes	

Scrum	framework	
Motivation	
Elective	topics,	Q&A	
	

	

Breaks	will	be	held	roughly	every	60-90	minutes	(for	10-15	minutes	each).	If	you	have	requests	for	
particular	break	times,	come	talk	to	me	about.	

Certification

Certified	ScrumMaster	(CSM)	certification	by	Scrum	Alliance	requires	approved	participation	on	a	CSM	
course	run	by	a	Certified	Scrum	Trainer	(CST).	The	CST	has	the	authority	to	decide	who	can	take	the	
CSM	test.	

For	me	to	send	your	name	forth	to	Scrum	Alliance,	you	need	to	participate	actively	on	this	course	for	
the	full	two	days.	If	you	have	something	that	absolutely	requires	you	be	absent	for	a	portion	of	the	
class,	talk	to	me	and	we’ll	agree	what	to	do	to	make	up	for	that	time.	

Assuming	full	participation,	I	will	send	your	name	and	email	address	to	Scrum	Alliance	typically	within	
a	couple	of	days.		

You	will	then	receive	an	email	from	Scrum	Alliance	containing	a	link	to	your	personalized	online	CSM	
test.	The	test	has	35	multiple-choice	questions.	In	order	to	pass,	you	have	to	get	24	correct	answers.	
You	have,	from	the	reception	of	the	email,	90	days	to	do	the	test.	The	test	will	take	approximately	20-
40	minutes	to	complete,	and	you	can	do	it	at	your	own	pace.	

If	you,	for	some	reason,	happen	to	fail	the	test,	you	can	take	the	test	a	second	time	without	additional	
fees.	You	will	be	which	questions	you	got	wrong,	but	not	what	was	the	correct	answer.	There	is	a	
small	fee	for	additional	attempts.		

Once	you’ve	passed	the	test,	you	need	to	accept	some	simple	license	terms,	and	then	you	are	
Certified	ScrumMaster.	Congratulations!!	 	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 3

BALL POINT GAME / AIRPLANE GAME
Have	a	conversation	in	your	table	group	about	the	insights	you	gained	through	the	simulation.	Write	
down	key	notes	below,	for	yourself	and	sharing	with	others.	

A Real-Life Story

A	project	team	(and	the	ScrumMaster)	was	getting	desperate.	The	project	was	nothing	like	they	
expected	a	Scrum	project	to	be	like.	The	PO	was	traveling	the	world	and	always	came	to	Sprint	
Planning	meetings	with	new	items	he	expected	the	Team	to	work	on.	The	Team	might	get	50%	of	these	
items	done	in	a	given	Sprint.		

In	the	conversations	with	the	ScrumMaster,	we	finally	realized	that	we	had	gotten	it	wrong.	The	job	of	
the	PO	was	not	to	make	the	Backlog	easy	for	the	Team	to	work	on,	but	it	was	the	Team’s	job	to	make	it	
possible	for	the	PO	to	explore	features	the	potential	users	would	need.	The	product	would	have	no	
value	if	it	had	no	users!	

Nine	months	went	like	that.	Then,	three	months	before	the	release,	the	SM	cornered	the	PO	and	said	
that	he	would	now	have	to	stop	traveling	and	focus	on	shaping	the	product	into	something	that	he	
could	then	deliver	to	the	users	(and	deliver	on	the	myriad	of	promises	made).	The	project	transformed	
into	a	project	with	clear	Backlog,	reliable	commitments,	and	stable	progress.	The	Team	had	used	XP	
practices,	so	they	were	able	to	integrate	and	extend	the	early	work	into	a	consistent	release.	

And	once	released,	the	PO	started	traveling	again	and	the	project	reverted	to	its	early	style	J.	

Lesson	learnt:	Not	all	projects	look	alike	and	have	same	priorities.	

THE BIG PICTURE
As	this	topic	is	discussed,	update	the	diagram	below	with	conceptual	levels	and	elements	that	are	
related	to	each	level	

	

	 	

“There are those who look at things the way they are,
and ask why... I dream of things that never were, and
ask why not?”

–	Robert	Kennedy	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 5

AGILE VALUES AND PRINCIPLES

Manifesto for Agile Software
Development

	
	

Principles of Lean Software Development

	

The 7 Wastes

Production

Inventory
Overproduction
Extra processing
Transportation
Waiting
Motion
Defects

	 Product Development

Work in progress
Unnecessary features
Unnecessary activities
Hand-offs and task switching
Delays
Relearning
Defects

	

12 Principles of
the Agile
Manifesto
Our highest priority is to
satisfy the customer through
early and continuous delivery
of valuable software.

Welcome changing
requirements, even late in
development. Agile processes
harness change for the
customer's competitive
advantage.

Deliver working software
frequently, from a couple of
weeks to a couple of months,
with a preference to the
shorter timescale.

Business people and
developers must work
together daily throughout the
project.

Build projects around
motivated individuals. Give
them the environment and
support they need, and trust
them to get the job done.

The most efficient and
effective method of
conveying information to and
within a development team is
face-to-face conversation.

Working software is the
primary measure of progress.

Agile processes promote
sustainable development. The
sponsors, developers, and
users should be able to
maintain a constant pace
indefinitely.

Continuous attention to
technical excellence and good
design enhances agility.

Simplicity – the art of
maximizing the amount of
work not done – is essential.

The best architectures,
requirements, and designs
emerge from self-organizing
teams.

At regular intervals, the team
reflects on how to become
more effective, then tunes
and adjusts its behavior
accordingly.

	
	 	

SCRUM VALUES
With	your	table	group,	try	to	circle	the	five	(5)	Scrum	values	from	the	following	list	of	values.	
	

Accuracy	 Creativity	 Honesty	 Persistence	 Simplicity	

Assertiveness	 Curiosity	 Humor	 Pragmatism	 Skill	

Aesthetics	 Decisiveness	 Industriousness	 Purposefulness	 Stewardship	

Balance	 Determination	 Initiative	 Rationality	 Tactfulness	

Caution	 Endurance	 Integrity	 Reliability	 Thoroughness	

Cleanliness	 Enthusiasm	 Joyfulness	 Resilience	 Tolerance	

Commitment	 Excellence	 Knowledge	 Respect	 Trust	

Confidence	 Flexibility	 Mindfulness	 Responsibility	 Trustworthiness	

Cooperation	 Focus	 Openness	 Self-discipline	 Unity	

Courage	 Helpfulness	 Orderliness	 Service	 Vision	

	

	

In	your	table	group,	define	a	scenario	in	which	one	(or	more)	of	the	Scrum	values	is	present,	but	it	is	
perverted	because	another	value	is	absent.	For	example,	a	scenario	like	this:	

Development	team	member	says,	“I	saw	the	problem	coming,	but	did	not	want	to	say	anything	
because	I	know	Adam	is	so	competent	and	I	thought	he	knew	of	the	issue	and	had	a	plan.”	

We	will	then	share	these	scenarios	and	try	to	understand	which	values	are	in	question.	

	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 7

COMPLEXITY AND CAUSALITY
Quoting	from	http://www.noop.nl/2008/08/simple-vs-complicated-vs-complex-vs-chaotic.html,		

My car key is simple.
It	took	me	about	three	seconds	to	understand	how	my	car	key	works.	OK,	maybe	that's	not	quite	
correct.	Mine	has	a	battery	in	it.	If	I	take	it	apart	it	might	take	me	another	three	hours	to	understand	its	
details.	But	yeah,	I'm	smart,	I'll	manage.		

My car is complicated.
It	would	take	me	years	to	understand	how	my	car	works.	And	I	don't	intend	to.	But	if	I	did,	then	some	
day	in	the	far	future	I	would	know	with	certainty	the	purpose	of	each	mechanism	and	each	electrical	
circuit.	I	would	fully	understand	how	to	control	it,	and	I	would	be	able	to	take	my	car	apart	and	
reassemble	it,	driving	it	exactly	as	I	did	before.		

Car traffic is complex.
I	can	travel	up	and	down	the	same	street	for	twenty	years,	and	things	would	be	different	every	time.	
There	is	no	way	to	fully	understand	and	know	what	happens	around	me	on	the	road	when	I	drive,	how	
other	drivers	operate	their	vehicles,	and	how	the	people	in	the	streets	interact.	I	can	make	guesses,	and	
I	can	gain	experience	in	predicting	outcomes.	But	I	will	never	know	for	sure.	

Car traffic in Lagos (Nigeria) is chaotic.
When	things	get	too	complex,	they	easily	become	chaotic.	Traffic	in	Lagos	is	so	bad,	it	is	not	even	
predictable.	Poor	infrastructure	and	planning,	heaps	of	waste,	pollution,	lack	of	security,	floods,	and	
many	more	problems	make	it	one	of	the	worst	places	in	the	world	to	be,	as	a	simple	car	driver.	

	 	

Place	the	systems	listed	below	into	appropriate	system	archetypes.	

 Simple Complicated

 Complex Chaotic

	

1.	Fixing	a	flat	tire	

2.	Stock	market	

3.	Developing	software	

4.	Designing	a	new	toy	for	Christmas	market	

5.	Sending	a	surveyor	to	Mars	

6.	Getting	to	work	in	a	strange	city	

7.	Getting	to	work	from	home	

8.	Operating	a	production	line	

9.	Building	a	pedestrian	underpass	

10.	Building	a	bridge	to	Sicily	(from	mainland	
Italy)	

11.	Software	code	itself	

	

Other	diagrams	talking	about	similar	ideas,	representing	them	in	slightly	different	terms:	

Adapted	Stacey	diagram	
	

	

Cynefin	framework	

	

	

	

P
ro
b
le
m

Solution

Known Unknown

Kn
ow

n/
A
gr
ee

d
U
nk
no

w
n/
D
is
ag

re
ed

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 9

EMPIRICAL PROCESS CONTROL
Systems	that	are	stable	and	predictable	can	use	defined	process	for	control.	In	a	defined	process,	the	
conversion	of	inputs	to	outputs	is	known	(or	knowable)	and	focus	is	on	establishing	right	inputs	and	
right	conversion	process	to	deliver	desired	outcomes.	Defined	processes	can	be	defined	once	and,	as	
long	as	the	inputs	and	outputs	don’t	change,	can	be	used	indefinitely.	Imagine	a	production	line.	

	 Therefore,	order	can	be	“defined”.	

Many	systems,	particularly	living	ones,	are	constantly	changing	and	at	least	somewhat	unpredictable.	
There	is	no	known	stable	conversion	–	the	same	inputs	can	deliver	different	outcomes,	or	the	same	
outcomes	can	be	derived	from	different	inputs.	We	may	have	a	pretty	good	idea	what	to	expect,	but	
every	process	instance	is	unique,	every	outcome	uniquely	tied	to	the	system	that	created	it.		

	 Order	“emerges”	from	the	system	over	time.	

To	achieve	desirable	outcomes,	we	need	empirical	process	control.	It	relies	on	three	pillars	(or	legs	in	
my	picture	below):	

	

	

	

	

	

	

	

	

	

	

	

The	control	of	the	system	is	linked	to	the	system,	and	as	the	system	changes	also	the	control	must	
change.	Collecting	feedback	from	the	system	and	feeding	it	to	the	control	process	is	critical.	

	

System with
emergent order

BUILD YOUR OWN SCRUM - INSTRUCTOR’S	SCRUM

Remember	to	take	a	picture	of	your	own	Build	Your	Own	Scrum	diagram	J.	

	

If	you	want	to	do	this	exercise	in	your	own	training	sessions,	you	can	find	the	latest	version	from	
http://weisbart.com/byos/	

	

DEFINITION OF DONE

Fill	in	the	blanks	in	the	text	using	the	snippets	on	the	right:	

Definition	of	Done	is	an	agreement	between	_________	and	_________	

regarding	the	__________________	and	the	__________________,	in	

order	for	an	item	to	be	considered	_________.	Ideally,	once	Done,	the	

product	could	be	___________________________,	assuming	that	the	PO	

to	___________________________.	Over	time,	the	DoD	should	get	

__________________	through	__________________	made	by	the	Team.	

	

Definition	of	Done	is	not	an	idealized	document,	describing	what	would	be	great	to	have,	but	a	down-
to-earth	list	of	things	the	Development	Team	will	actually	commit	to	doing	for	every	item	selected	
into	a	Sprint.	

	

level	of	quality	
Improvement	actions	
deployed	to	production	
Development	Team	
release	the	increment	
activities	done	
more	complete	
Done	
PO	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 11

SCRUMMASTER ROLE IN DETAIL

SM is responsible /
accountable for

SM is doing /
helping with

HINTS AND TIPS ON RUNNING SCRUM PROCESS

Different practices for Daily
Scrum

1) Basic	three	questions:	
-	What	did	I	do	yesterday?	
-	What	do	I	plan	to	today?	
-	What	impediments	are	blocking	my	
progress?	

2) Three	“we”	questions:	
-	Of	the	things	I	did	yesterday,	what	
should	other	team	members	know?	
-	In	the	things	I	plan	to	do	today,	where	
do	I	need	help	or	coordination	with	
others?	
-	What	impediments	are	blocking	our	
progress?	

3) Fourth	question:	
Are	we	in	schedule	to	deliver	our	
commitment	this	Sprint?	
-	If	no,	Team	contacts	the	PO	and	they	
collaboratively	adjust	the	Sprint	backlog	
to	an	achievable	one.	

4) Instead	of	going	person	by	person,	the	
Team	goes	through,	one	by	one,	all	items,	
quickly	going	through	what	each	person	
did	yesterday	and	what	they	plan	to	do	
today	regarding	that	item.	Works	only	
when	the	team	has	only	a	few	active	
items	at	a	given	time.	

5) Very	small	teams	sometimes	opt	not	to	
have	a	Daily	Scrum,	and	instead	have	
continuous	communication	as	part	of	the	
daily	work.	

6) Reverse	the	order	of	questions,	start	with	
impediments,	then	yesterday,	then	today.	

7) Radical	questions:	
-	What	you	did	to	change	the	world	
yesterday	
-	How	you	are	going	to	crush	it	today	
-	How	you	are	going	to	blast	through	any	
obstacles	unfortunate	enough	to	be	
standing	in	your	way	

Generally,	focus	on	the	baton,	not	the	runners.		

Team’s Commitment to PO

“We	promise	that	...	

• We	believe	we	can	reach	the	sprint	
goal.	

• We	will	do	everything	in	our	power	to	
reach	the	goal	and	will	inform	you	
immediately	if	we	have	problems.	

• Code	will	be	potentially	shippable	at	
the	end	of	the	sprint.	

• If	we	fall	behind	schedule	we	will	
negotiate	with	the	Product	Owner	to	
decide	what	to	do.	

• If	we	get	ahead	of	schedule	we	will	
add	stories	from	the	product	backlog	
in	priority	order.	

• We	will	display	our	progress	and	status	
on	a	daily	basis.	

• Every	story	we	do	is	complete.”	

Caveat:	

Estimates	are	estimates.	We	will	be	early	some	
times	and	late	other	times.	We	will	document	
this	normal	variation	with	our	sprint	velocity.	

Borrowed	from:	Scrum	Inc.	CSM	slide	deck.	

Scrumming the Scrum

In	each	Retrospective,	select	exactly	one	
improvement	item	and	place	it	as	the	most	
important	Sprint	Backlog	item	to	be	done	in	
the	next	Sprint.	

Decide	up	front	how	you	will	measure	the	
success	of	the	improvement	and	who	will	
collect	the	data.	Evaluate	success	in	next	
Retrospective.	

		

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 13

HINTS AND TIPS ON RUNNING SCRUM PROCESS II

Track Team Happiness

Frequently,	request	all	Team	members	to	rate	
their	happiness	that	week	in	a	scale	of	1	to	5	(5	
is	best).	Track	the	individual	numbers	and	the	
average	score.	Ask	also	why	they	gave	that	
score.	Act	to	correct	problems	that	surface.	

Never assign Product
backlog items to team
members

Always	emphasize	that	the	Team	pulls	items	
into	the	Sprint	Backlog	as	a	team.		

Do not assign tasks in Sprint
Planning

Many	teams	are	used	to	selecting	the	tasks	
each	person	intends	to	work	on	the	Sprint	
during	the	Sprint	Planning	meeting.	Even	when	
done	by	people	themselves,	this	is	a	bad	
pattern.	It	establishes	individual	goals	over	one	
shared	goal.	People	are	less	likely	to	
collaborate	and	team	formation	suffers.	

Only	allow	people	to	pull	tasks	in	the	Daily	
Scrum	meeting,	regardless	of	how	convinced	
they	are	about	who	will	do	which	task.	

Task estimation is usually
waste

Just	make	sure	that	the	team	breaks	the	tasks	
small	enough.	An	average	of	about	half-a-day	
is	considered	ideal.	This	allows	seeing	a	
constant	flow	of	work	across	the	Scrum	board	
and	makes	it	easy	to	see	when	people	are	
stuck	with	their	items.	

To	help	the	breakdown,	the	Team	can	first	
create	a	shared	design	on	a	flipchart	or	
whiteboard.	This	design	should	outline	the	UI	
flow,	key	design	decisions,	most	important	test	
areas,	and	most	critical	open	items.	This	
shared	design	should	be	made	visible	in	the	
team	room.	

Sprint Review is not a
Surprise Party

The	PO	should	always	know	what’s	coming	up	
in	the	Sprint	Review	regarding	the	work	the	
team	has	done	this	Sprint.	There	should	be	
enough	communication	during	the	Sprint	that	
the	Team	and	PO	can	discuss	progress,	
outcomes,	and	impediments.	

The	Sprint	Review	should	then	be	focused	on	
stakeholder	engagement.	The	Team	and	PO	
should	collaboratively	plan	what	they	want	to	
show,	what	feedback	they	want	to	get,	which	
stakeholders	to	invite,	and	how	to	make	the	
event	exciting	for	the	stakeholders.	

Story-level design

Before	starting	work	on	a	new	Product	Backlog	
Item,	the	Team	(possibly	with	PO)	should	draft	
the	PBI	level	design	on	a	whiteboard	or	flip-
chart	paper.	This	design	should	describe,	at	
appropriate	detail	level,	what	the	system	will	
look	like	after	the	story,	what	are	the	technical	
changes	needed	to	get	there,	how	to	test	it,	
and	any	other	relevant	detail.	

The	tasks	needed	to	implement	the	PBI	are	
then	extracted	from	this	design.	If	done	this	
way,	the	tasks	are	likely	to	be	smaller	and	
clearer,	plus	the	team	will	be	better	equipped	
to	work	together	on	the	time.	

Team Room

In	the	team	room,	all	team	members	should	be	
generally	facing	towards	each	other.	
Therefore,	try	to	have	tables	in	the	middle.	
Leave	walls	for	tasks,	designs,	data	collection,	
and	any	other	useful	information.	Avoid	having	
any	obstacles	blocking	the	view	from	one	team	
member	to	another.	

		

TEAM FORMATION
From	Wikipedia	on	Forming,	Norming,	Storming,	Performing	(Bruce	Tuckman,	1965):	

Forming	

In	the	first	stages	of	team	building,	the	forming	of	the	team	takes	place.	The	individual's	behavior	is	driven	by	a	
desire	to	be	accepted	by	the	others,	and	avoid	controversy	or	conflict.	Serious	issues	and	feelings	are	avoided,	
and	people	focus	on	being	busy	with	routines,	such	as	team	organization,	who	does	what,	when	to	meet,	etc.	
But	individuals	are	also	gathering	information	and	impressions	-	about	each	other,	and	about	the	scope	of	the	
task	and	how	to	approach	it.	This	is	a	comfortable	stage	to	be	in,	but	the	avoidance	of	conflict	and	threat	means	
that	not	much	actually	gets	done.	

The	team	meets	and	learns	about	the	opportunities	and	challenges,	and	then	agrees	on	goals	and	begins	to	
tackle	the	tasks.	Team	members	tend	to	behave	quite	independently.	They	may	be	motivated	but	are	usually	
relatively	uninformed	of	the	issues	and	objectives	of	the	team.	Team	members	are	usually	on	their	best	behavior	
but	very	focused	on	themselves.		

The	forming	stage	of	any	team	is	important	because,	in	this	stage,	the	members	of	the	team	get	to	know	one	
another,	exchange	some	personal	information,	and	make	new	friends.	This	is	also	a	good	opportunity	to	see	
how	each	member	of	the	team	works	as	an	individual	and	how	they	respond	to	pressure.	

Storming	

Every	group	will	then	enter	the	storming	stage	in	which	different	ideas	compete	for	consideration.	The	team	
addresses	issues	such	as	what	problems	they	are	really	supposed	to	solve,	how	they	will	function	independently	
and	together	and	what	leadership	model	they	will	accept.	Team	members	open	up	to	each	other	and	confront	
each	other's	ideas	and	perspectives.	In	some	cases	storming	can	be	resolved	quickly.	In	others,	the	team	never	
leaves	this	stage.	The	maturity	of	some	team	members	usually	determines	whether	the	team	will	ever	move	out	
of	this	stage.	Some	team	members	will	focus	on	minutiae	to	evade	real	issues.	

The	storming	stage	is	necessary	to	the	growth	of	the	team.	It	can	be	contentious,	unpleasant	and	even	painful	to	
members	of	the	team	who	are	averse	to	conflict.	Tolerance	of	each	team	member	and	their	differences	needs	to	
be	emphasized.	Without	tolerance	and	patience	the	team	will	fail.	This	phase	can	become	destructive	to	the	
team	and	will	lower	motivation	if	allowed	to	get	out	of	control.	Some	teams	will	never	develop	past	this	stage.	

Norming	

The	team	manages	to	have	one	goal	and	come	to	a	mutual	plan	for	the	team	at	this	stage.	Some	may	have	to	
give	up	their	own	ideas	and	agree	with	others	in	order	to	make	the	team	work.	In	this	stage,	all	the	team	
members	takes	the	responsibility	and	have	the	ambition	to	work	for	the	success	of	the	goals	of	the	team.	

Performing	

It	is	possible	for	some	teams	to	reach	the	performing	stage.	These	high-performing	teams	are	able	to	function	as	
a	unit	as	they	find	ways	to	get	the	job	done	smoothly	and	effectively	without	inappropriate	conflict	or	the	need	
for	external	supervision.	Team	members	have	become	interdependent.	By	this	time	they	are	motivated	and	
knowledgeable.	The	team	members	are	now	competent,	autonomous	and	able	to	handle	the	decision-making	
process	without	supervision.	Dissent	is	expected	and	allowed	as	long	as	it	is	channeled	through	means	
acceptable	to	the	team.	

	 	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 15

WHY TEAMS? WHEN NOT?
In	business	contexts,	there	are	typically	two	ways	to	organize	people	and	their	collaboration.	

Workgroup Team

	 	

	 	

	 	

	 	

	 	

	

	

Impact on capabilities Three Necessary Conditions

	 	

Time

Va
lue

* Outside these three, there are many factors that
then influence the ease and speed of the process.

CONDITIONS FOR ADVANCEMENT

 Forming

 Storming

 Norming

 Performing

	

SM DOES / ENSURES

Forming

 Storming

 Norming

 Performing

	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 17

MOTIVATION
From	the	Dan	Pink	video,	we	learned	that	intrinsic	motivation	trumps	external	motivators.	According	
to	studies	and	him,	as	long	as	money	is	sufficient,	motivation	is	driven	by:	

A

M

P
	

Which	of	these	theories	describe	you?	Which	one	describes	people	around	you?	

	
Theory X Theory Y

Attitude	 People	dislike	work,	find	it	boring,	
and	avoid	it	if	they	can	

People	need	to	work	and	want	to	take	
an	interest	in	it.	Under	the	right	
conditions,	they	can	enjoy	it	

Direction	 People	must	be	forced	or	bribed	to	
make	the	right	effort	

People	will	direct	themselves	towards	
a	target	that	they	accept	

Responsibility	 People	would	rather	be	directed	
than	take	a	responsibility	(which	
they	avoid)	

People	will	seek	and	accept	
responsibility,	under	the	right	
conditions	

Motivation	 People	are	mainly	motivated	by	
money,	and	fear	about	their	job	
security	

Under	the	right	conditions,	people	are	
motivated	by	the	desire	to	realize	
their	potential	

Creativity	 Most	people	have	little	creativity	–	
except	when	it	comes	to	getting	
around	rules	

Creativity	and	ingenuity	are	widely	
distributed	and	grossly	under-used	

(Copied from Organize for Complexity, by Niels Pflaeging, 2014, who took it
from The Human Side of the Enterprice, Douglas McGregor, 1960)

	

	

IDEAL TEAM?
Due	to	communication	saturation,	as	the	size	of	the	Team	increases,	their	ability	to	get	things	done	
decreases.	

	

	

Scrum Team Hyperproductive Pattern Language
Teams that finish early accelerate faster:

• Stable	Teams	–	Retain	knowledge	and	team	formation,	aim	for	80%	annual	stability
• Yesterday’s	Weather	–	Do	not	pull	too	much	work	into	a	Sprint	
• Swarming	–	Getting	work	done	quickly	by	collaborating	on	items	at	the	same	time
• Interrupt	Pattern	–	Manage	interruptions	during	the	sprint	
• Daily	Clean	Code	–	Deliver	a	defect-free	product	at	Sprint	end,	and	every	day
• Scrum	Emergency	Procedure	-	Stop	the	line	when	plans	are	no	longer	realistic
• Scrumming	the	Scrum	–	Put	the	one	improvement	item	to	the	top	of	Sprint	Backlog
• Happiness	metric	–	Do	not	overburden	the	Team,	happy	people	are	more	productive	

Adapted from: Scrum, Inc. CSM course materials. Original source: Teams That Finish Early
Accelerate Faster: A Pattern Language for High Performing Scrum Teams

47th Hawaii International Conference on System Sciences (HICSS)
By Jeff Sutherland, Neil Harrison, Joel Riddle,  January 2014

		 	

From	Scrum	Inc.	CSM	slide	deck,	original	source:	
http://www.qsm.com/process_01.html		
(491	projects)	

	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 19

THE EFFECT OF MULTITASKING
Despite	what	we	often	feel	about	ourselves,	we	humans	are	bad	at	multitasking.	

	

	

Number	of	Simultaneous	
Projects	

Percent	of	Working	Time	
Available	per	Project	

Loss	to	Context	Switching	

1	 100%	 0%	
2	 40%	 20%	
3	 20%	 40%	
4	 10%	 60%	
5	 5%	 75%	

	

Borrowed	from	Scrum,	Inc.	CSM	course	materials.	Original	source:	Weinberg,	Gerald	M.	(1992),		
Quality	Software	Management:	Systems	Thinking.	Dorset	House,	p.	284.		

a-j	 I..XII	 1..10	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	

	

a-j	 I..XII	 1..10	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	

	

	

From	Scrum	Inc.	CSM	slide	deck,	
original	source:		
The	Impact	of	Agile	Quantified,	
Rally	Software	Development	Corp,	
2015	

CHALLENGING SITUATIONS WITH TEAMS
In	table	groups,	discuss	the	following	scenarios.	What	kind	of	issues	draw	your	attention?	What	
“smells”	suspicious?	What	would	you	do	to	start	resolving	the	situation?	

Scenario 1

You	are	the	ScrumMaster	and	are	heading	for	the	team	room.	The	functional	analyst	runs	past	you	
crying	and	the	lead	engineer	runs	past	you	enraged,	both	on	the	way	to	their	functional	managers’	
offices.	

You	go	into	the	team	room.	You	can	cut	the	tension	with	a	knife	it	is	so	thick.	

Apparently,	the	analyst	has	been	writing	specs	and	giving	them	to	the	engineers,	who	then	change	
them	as	they	see	fit.	Anger	over	this	has	been	building	for	three	weeks.	

What	do	you	do?	

	

		

Scenario 2

Before	becoming	the	ScrumMaster,	you	were	a	technical	lead	and	respected	for	your	design	and	
programming	skills.	

In	your	new	project,	the	team	comes	to	you	for	advice	on	a	challenging	architectural	choice.	The	team	
members	have	been	arguing	between	two	approaches,	but	could	not	agree	which	one	to	choose.	

They	want	you	to	choose	the	approach.	

What	do	you	do?	

	

		

Scenario 3

You	are	the	ScrumMaster.	Everyone	on	the	team	except	John	meets	with	you.	They	tell	you	that	John	is	
not	doing	his	work,	is	offensive,	is	difficult	to	work	with,	and	they	want	you	to	fix	the	problem.	

What	do	you	do?	

		

	 	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 21

RELEASE PLANNING
You	own	the	following	prioritized	Product	Backlog	(105	story	points	in	total	size):	

Story	number	 Size	
Story	1	 3	
Story	2	 2	
Story	3	 5	
Story	4	 5	
Story	5	 3	
Story	6	 8	
Story	7	 5	
Story	8	 13	
Story	9	 13	
Story	10	 20	
Story	11	 8	
Story	12	 20	

	

You	are	the	PO.	The	team	has	been	working	on	the	product	for	already	several	sprints	and	has	
established	probable	velocity	between	7	and	10.	The	next	release	is	7	sprints	into	the	future.	

• What	is	the	scope	that	you	feel	could	commit	to	stakeholders	with	reasonable	safety?	
• Which	stories	you	feel	you	should	pretty	much	rule	out	of	probable	release	scope?	

Visualize	the	“thresholds”	to	the	Product	Backlog	by	e.g.	drawing	lines	appropriately.	

Map	the	stories	(using	story	numbers)	to	the	following	simple	release	plan.	

	

	

	

	

	
• How	many	points	worth	of	stories	can	you	allocate	to	each	“slot”	(note	that	multiple	sprints	

are	grouped	together	as	you	plan	further	out)?	
• Is	this	simple	method	sufficient	for	release	planning?	If	not,	what	other	things	need	to	be	

considered?	

	 	

1 2 3-4 5-7 Sprint

Stories

IMPORTANT NUMBERS TO KNOW ABOUT YOUR BACKLOG
In	order	to	account	for	things	we	don’t	know	about	the	future,	we	can	collect	data	from	history.	The	
following	numbers	allow	more	accurate	estimation	of	release	scope:	

• The	Product	Backlog	estimates	for	future	epics	form	the	starting	point	
• Undone	Work	is	any	work	that	was	not	included	as	part	of	the	Definition	of	Done,	such	as	

possible	user	acceptance	testing	
• Emerging	Requirements	counts	the	size	of	new	emerged	features	during	the	development	of	

previous	releases	
• Customer	Feedback	after	Release	counts	the	size	of	actions	responding	to	customer	feedback	

regarding	the	released	new	features.	

For	example,	for	a	healthcare	company	in	Houston,	TX,	for	every	100	points	in	known	epics	for	a	
future	release:	

• 20	points	of	Undone	Work	
• 40	points	of	emerging	requirements	
• 60	points	of	customer	feedback	after	previous	releases	when	live	

Therefore,	if	the	current	velocity	would	indicate	e.g.	400	points	of	development	effort	for	a	given	
release,	they	could	only	plan	for	~250	points	prior	to	starting	the	release.	They	would	also	have	to	
prepare	for	~150	points	of	customer	feedback	after	the	release	when	considering	the	subsequent	
release.	

Borrowed	from	Scrum	Inc.	CSM	slide	deck	

What	are	your	numbers?	

	

Other suggestions

In	long	projects,	try	to	avoid	long	periods	of	development	work	without	any	major	milestones.	Seek	to	
have	a	pilot	deployment,	incremental	release	or	some	other	event	at	least	every	6	months.	This	allows	
teams	to	focus	on	a	near-future	target	and	see	concrete	progress.	Such	releases	also	confirm	progress	
at	roadmap	level	for	stakeholders.	

Focus	aggressively	to	remove	impediments,	to	allow	the	team	to	increase	their	velocity.	In	your	
release	planning	and	visualizations,	never	assume	increasing	velocity	in	the	future,	but	update	your	
predictions	when	it	does	increase.	This	improvement	allows	either	releasing	earlier,	allowing	
increased	scope	during	development,	or	saving	a	challenged	project.	

Fixing	bugs	right	away	(the	same	day	when	they	are	found)	is	massively	cheaper	than	fixing	them	
later.	Some	companies	have	measured	the	cost	and	have	found	it	e.g.	24	time	more	costly	later,	i.e.	
for	a	bug	that	could	be	fixed	in	one	hours	if	fixed	immediately,	it	would	take	three	days	to	fix	it	later.	

	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 23

BACKLOG/RELEASE MANAGEMENT STRATEGIES
Depending	on	project,	the	PO	will	want	to	manage	the	Product	Backlog	and	releases	in	different	ways.	
In	which	kinds	of	projects	is	each	of	the	following	strategies	most	likely	to	be	useful	(two	examples	for	
each)?	

	

Deadline-driven	–	PO	focuses	on	meeting	certain	strategic	deadlines,	scope	and	budget	are	
negotiated	as	necessary.	

__		

__		

	

Budget-driven	–	PO	focuses	on	meeting	certain	agreed	cost	target	(or	as	low	as	possible),	
schedule	and	scope	can	be	negotiated	as	necessary.	

__		

__		

	

Feature-driven	–	PO	focuses	on	meeting	certain	feature	or	business	capability	targets	(either	
known	up	front,	or	defined	as	discovered),	budget	and	schedules	are	negotiable.	

__		

__		

	

ROI-driven	–	PO	focuses	on	feature	ROI,	prioritizing	and	delivering	features	as	long	as	they	meet	
certain	established	ROI	ratio	targets.	

__		

__		

	

	 	

SCALING SCRUM
	

The	golden	rule	of	scaling:		___		

There	are	many	approaches	(SaFE,	LeSS,	Scaled	Agile	Delivery,	…).	The	following	picture	is	from	LeSS,	
which	I	personally	consider	most	aligned	with	Scrum	values	and	principles,	but	any	framework	that	
gets	you	moving	in	the	right	direction	and	gets	your	management	engaged	is	good.	

	

	

	(For	much	more	details,	check	out	http://less.works/.	And	I	promised	to	say	that	Bas	and	Craig	are	
incredibly	handsome!	J)	 	

1 day

2-4 week

Sprint

Sprint

Retrospective

Sprint

Review

Joint

Retro-

spective

Product Backlog

Refinement

Potentially

Shippable

Product

Increment

Sprint

Planning

Part 2

Sprint

Planning

Part 1

(2-4 h)

(15 min)

Product

Backlog

Product

Owner

(2-4 h)
(2-4 h)

 (5-10% of Sprint)

(1.5-3h)

(Feature)

Team

+

ScrumMaster

Sprint

Backlog

Daily

Scrum

www.craiglarman.com

www.odd-e.com

Copyright © 2010

C.Larman & B. Vodde

All rights reserved.

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 25

CROSS-TEAM COMMUNICATIONS
Whereas	the	features	and	managing	work	flow	through	the	feature	teams,	there	as	also	cross-cutting	
concerns,	like	competence	development,	architecture,	usability	design,	coding	conventions,	and	
continuous	integration	&	deployment.	

In	Scrum,	ensuring	cross-team	technical	alignment	is	the	responsibility	of	the	________________.	

	

	

http://blog.crisp.se/2012/11/14/henrikkniberg/scaling-agile-at-spotify	

	

”A	Squad	is	similar	to	a	Scrum	team,	and	is	designed	to	feel	like	a	mini-startup.	They	sit	together,	and	
they	have	all	the	skills	and	tools	needed	to	design,	develop,	test,	and	release	to	production.	They	are	a	
self-organizing	team	and	decide	their	own	way	of	working	–	some	use	Scrum	sprints,	some	use	
Kanban,	some	use	a	mix	of	these	approaches.”	

”A	tribe	is	a	collection	of	squads	that	work	in	related	areas	–	such	as	the	music	player,	or	backend	
infrastructure.”	

”The	chapter	is	your	small	family	of	people	having	similar	skills	and	working	within	the	same	general	
competency	area,	within	the	same	tribe.”	

”A	Guild	is	a	more	organic	and	wide-reaching	’community	of	interest’,	a	group	of	people	that	want	to	
share	knowledge,	tools,	code,	and	practices.”	

https://dl.dropboxusercontent.com/u/1018963/Articles/SpotifyScaling.pdf	

TECHNICAL PRACTICES (XP)
Extreme	Programming	(XP)	forms	a	solid	methodology	for	development	of	software	systems.	Unlike	
Scrum,	it	is	tied	to	software	development	domain.	Given	that	it	is	assumed	that	a	Scrum	team	will	
seek	ways	in	which	they	can	effectively	deliver	a	new	tested	version	of	the	system	in	every	sprint,	it	is	
expected	that	the	team	adopt	XP	or	similar	technical	practices	through	continuous	inspect	and	adapt	
cycles.	Unfortunately,	it	is	not	always	the	case.	

XP	consists	of	a	set	of	development	practices,	each	of	which	is	simple	and	insufficient	in	itself,	but	
becomes	very	powerful	when	combined	with	and	supported	by	other	XP	practices.	

The	practices,	and	their	key	dependencies,	are:	

	

	

	

	

	

	 	

On-Site
Customer

Planning
Game

Metaphor

40-h Week

Simple
Design

Refactoring

Short
Releases

TestingPair
Programming

Coding
Standards

Collective
Ownership Continuous

Integration

Defined in
Scrum

“I’ve never seen or heard of a
hyperproductive team that wasn’t
doing the eXtreme Programming
practices (as described by Kent
Beck, Ron Jeffries, etc.).”

Michael James, http://danube.com/system/files/A_ScrumMaster's_Checklist_blog.pdf

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 27

	 	

Functional Test
Examples
Story Tests
Prototypes
Simulations

Exploratory Testing
Scenarios

Usability Testing
User Acceptance Testing

Alpha / Beta

Unit Test
Component Tests

[Test Driven Development]

Performance and
Load Testing

Security Testing
”-ility” Testing

Manual

Testers

Automated &
Manual

Coders and
Testers

Automated

Coders
Tools

Coders and
Testers,

Specialists

Business Facing

Technology Facing

Su
p

p
or

tin
g

 th
e

Te
a

m

C
ritiq

ue Prod
uct

Adapted	from	Janet	Gregory’s	version	of	Brian	Marick’s	original	diagram	

TEAM WALL CHARTS
As	we	go	through	the	following	examples	of	team	wall	charts	together,	we’ll	discuss	what	
observations	you	can	make	in	each	and	what	possible	problems	they	highlight.	

	

	

	

	 	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
Original	copyright	for	the	diagrams:	Henrik	Kniberg	

	 CSM Course Workbook
	

	
	
	 ©	Petri	Heiramo,	2010-2013,	all	rights	reserved,	but	you	can	use	this	freely	with	appropriate	attribution.		 29

RETROSPECTIVES
ScrumMasters	spend	significant	amount	of	time	preparing	for	retrospectives,	because	good	
retrospectives	are	critical	for	the	improvement	of	the	ways	of	working.	

Things	that	make	retrospectives	good:	

Discuss	how	the	following	factors	impact	the	safety	and	effectiveness	of	Retrospectives	(and	
communication	in	general):	

• Sarcasm	
• Irony	
• Aggressiveness	
• Defensiveness	
• Misdirection	
• Hierarchical	relationships	
• Shaming	
• Blame-seeking	 	

RECOMMENDED READING, BLOGS, ETC.
Books	I	like	and	that	I	have	found	useful	in	expanding	my	understanding	of	Agile:	

• Lean	Software	Development	–	Mary	and	Tom	Poppendieck	
• Leading	Lean	Software	Development	–	Mary	and	Tom	Poppendieck	
• Succeeding	with	Agile	–	Mike	Cohn	
• User	Stories	Applied	–	Mike	Cohn	
• Agile	Estimation	and	Planning	–	Mike	Cohn	
• Agile	Retrospectives	–	Diana	Larsen	&	Esther	Derby	
• Agile	Project	Management	with	Scrum	–	Ken	Schwaber	
• Agile	Product	Management	with	Scrum	–	Roman	Pichler	
• Extreme	Programming	Explained	–	Kent	Beck	
• Scaling	Lean	&	Agile	Development:	Thinking	and	Organizational	Tools	for	Large-Scale	Scrum	–	

Bas	Vodde	&	Craig	Larman	
• Agile	and	Iterative	Development:	A	Manager's	Guide	–	Craig	Larman	
• Management	3.0	–	Jurgen	Appelo	
• Lean	Startup	–	Eric	Reis	
• Running	Lean	–	Ash	Maurya	
• Scrum:	The	Art	of	Doing	Twice	the	Work	in	Half	the	Time	–	Jeff	Sutherland	

The	above	list	IS	NOT	a	comprehensive	list	of	good	Agile	books,	just	what	I’ve	read	and	liked.	

If	you	want	to	go	outside	typical	Agile	space	to	understand	Agile	organizational	behavior	(and	what	
Agile	organizations	could	possibly	look	like),	here	are	some	books	I’ve	liked:	

• Maverick	–	Ricardo	Semler	
• Seven	Day	Weekend	–	Ricardo	Semler	
• Leading	with	LUV	–	Ken	Blanchard,	Colleen	Barrett	
• Delivering	Happiness	–	Tony	Hsieh	
• Great	Boss,	Dead	Boss	[tribal	leadership]	–	Ray	Immelman	
• Tribal	Leadership	–	Logan,	King,	Fischer-Wright	
• Switch	–	Dan	&	Chip	Heath	

	

TRAINER CONTACT INFORMATION

Petri Heiramo

Email:	petri.heiramo@gmail.com	

WWW:	http://agilecraft.wordpress.com/	

Twitter:	@pheiramo	

LinkedIn:	http://fi.linkedin.com/in/petriheiramo/	

	

