
Agile Coach, CST

Agile Planning
Petri Heiramo

An Agile Plan Is Not a “Rough Guide”

•  Some teams think that, if they did not finish all stories, that was
OK, …”we are agile”

•  Postponing stories was seen as an acceptable (and often used)
option.

•  This is WRONG

•  The point of an iteration is to provide a hard dead-line – a time
box – to help the team to focus on the really important stuff

•  If you drop stories to the next iteration you do not have a time-
box at all: you only have regularly scheduled meetings

•  That leads to issues of trust and waste

2	

copyright Martine Devos 2007

Copyright 2011 CollabNet Inc. and Petri Heiramo

Scrum Planning

•  Scrum plans have to be
•  Iterative
•  Incremental
•  Risk and value driven
•  Time-boxed

•  Without ALL four, it’s not Scrum!

•  It may work for you, but don’t call it Scrum

Copyright 2011 CollabNet Inc. and Petri Heiramo

“Often detail adds no more
usefulness – only a false
appearance of validity.”

- Edward de Bono

Copyright 2011 CollabNet Inc. and Petri Heiramo

Involve the Customer!

•  Customer and users are involved in almost every activity in
planning through Product Owner role and stakeholder
participation

•  Consider how to make the participation as broadband as
possible

•  Live participation is almost always the best

•  Continuous participation!

Copyright 2011 CollabNet Inc. and Petri Heiramo

Focus of Scrum Planning

•  Strategy

•  Portfolio

•  Product

•  Release
•  Sprint
•  Day

Scrum’s focus is on planning at product, release and iteration levels

Daily planning is
team’s concern

Copyright 2011 CollabNet Inc. and Petri Heiramo

Reducing Uncertainty

•  Requirement specification defines
“what” first, then design defines
“how”

•  Initial focus on clarifying “what” with
natural transition to “how”

En
d	
U
nc
er
ta
in
ly
	 (W

ha
t)

Means	 Uncertainty	 (How)

High Low

High

Low

En
d	
U
nc
er
ta
in
ly
	 (W

ha
t)

Means	 Uncertainty	 (How)

High Low

High

Low

Waterfall	 /	 phased Agile	 /	 iterative

Copyright 2011 CollabNet Inc. and Petri Heiramo

Cone of Uncertainty (Reversed)

Time

Now

The further you try to estimate to, the less accurate is your estimate.

Agile planning reflects this,

by reducing the level of

detail in long-term plans.

Copyright 2011 CollabNet Inc. and Petri Heiramo

Copyright 1996-2007, ADM, All Rights Reserved v8.1 	

Copyright 2011 CollabNet Inc. and Petri Heiramo

Time Spent Planning

For a shorted
sprint, use
correspondingly shorter time-boxes.

You probably have to
do more planning in the
background than this,
especially early in the
project

Also, reserve up to 10% of time for refining future items in product backlog

Copyright 2011 CollabNet Inc. and Petri Heiramo

Making a Plan

•  We already know project size (either in story points or ideal
days)

•  We need measure for development capacity and progress

•  Measure of Progress: Velocity

•  Measured as realized functionality / sprint

•  Initially an estimate, based on past performance in subsequent

sprints
•  Either ”yesterday’s weather” or average from several

sprints

Velocity is a good planning tool, but a bad metric. Why?

Copyright 2011 CollabNet Inc. and Petri Heiramo

Estimating Project Scope

•  Possible Scope = Duration * Velocity
•  Possible Scope means the sum of all features that can

be developed in a given Duration with a given Velocity

•  The different velocities give different estimates
•  Allows for risk management regarding desired

functionality

•  Alternatively, if there is certain desired scope
•  Duration = Desired Scope / Velocity
•  Can be used to determine the minimum duration

needed before possibility of release

Copyright 2011 CollabNet Inc. and Petri Heiramo

Different Velocities

Latest observation = 36

Avg. of last 8 = 33

Worst 3 of last 8 = 28

Copyright 2011 CollabNet Inc. and Petri Heiramo

Extrapolate from Velocity

Assuming we have
5 sprints left:

At our lowest velocity, we
get here (5 * 28)

At our average velocity,
we get here (5 * 33)

At our latest velocity, we
get here (5 * 36)

Copyright 2011 CollabNet Inc. and Petri Heiramo

Product Backlog

•  The Product Backlog is the heart of Scrum planning
•  Requirements
•  Release planning
•  Progress tracking

•  What to put in the product backlog?

•  Everything related to the developed solution
•  Stories (requirements), errors, spikes, ...

•  Anything that needs a business decision
•  E.g. significant development decisions with trade-offs

•  What not to put in there?

•  Tasks
•  Most other development activities (setting up environment,

etc.)
•  General quality requirements (put them in the Definition of

Done)

Copyright 2011 CollabNet Inc. and Petri Heiramo

Product Backlog ≠ Requirement Spec

•  Two important differences to traditional requirement
specification

1.  Product Backlog is not expected to contain all
requirements at the start of the implementation

2.  All the stories in the PB are not expected to be
delivered by the team

•  It may be the goal in a specific project, but there
is no general expectation that it is so

•  The level of detail is different
•  Requirement specifications try to be comprehensive

and accurate to the detail
•  Product backlog is a overview and placeholder for

details passed in written or oral form

Copyright 2011 CollabNet Inc. and Petri Heiramo

Managing the Product Backlog

•  The product backlog is owned by Product Owner
•  Decides on content, priority and implementation order
•  ScrumMaster often supports by managing the normal

maintenance

•  Anyone can propose items to product backlog
•  The product backlog can contain any number of items
•  Only features placed into sprint by PO are actually

made

•  Every item should have a size estimate
•  Can be excepted with items that will be done far into

the future, if at all
•  The team is responsible for providing the size estimates

Copyright 2011 CollabNet Inc. and Petri Heiramo

Managing Scope

•  Scope management is dependent on business objectives
•  Fixed budget à Make a cut-off point
•  Feature-driven à Adjust budget and schedule estimate to

include desired stories
•  Value-driven à Develop features as long as they provide

enough value-added
•  Fixed schedule à Prioritize features and adjust team size to fit

desired most important features into schedule
•  Combinations of above

•  Scope-creep is very possible, if not guarded against

•  Having everything at top priority is not scope management

•  Results in arbitrary results as no real prioritization is made

•  Most large features have different priorities for sub-features
•  Split large stories to smaller ones for meaningful prioritization

Copyright 2011 CollabNet Inc. and Petri Heiramo

Managing Risk

Ri
sk

Value

H
ig
h

Low High

Lo
w

High risk,
low value

High risk,
high value

Low risk,
High value

Low risk,
low value

Avoid Do First

Do Second Do Last

Copyright 2011 CollabNet Inc. and Petri Heiramo

Granularity Increases

Copyright 1996-2007, ADM, All Rights Reserved v8.1 	

When planning
releases, low
granularity simplifies
planning.

When planning sprints,
high granularity is a
necessity.

Breaking stories
smaller is a continuous
activity through the
project.

Copyright 2011 CollabNet Inc. and Petri Heiramo

Planning Release Schedule

•  Considerations
•  Given your organization and users, how often can you do

production releases?
•  How often can you expect to get feedback?
•  How big is the overhead in doing a production release?
•  Are there external parties that need releases at particular

times?

•  Typically, the more often you can do production releases, the more
feedback you will get

v1 v2 v3 v4 v5 Sprint/
iteration
release

Production
release

Copyright 2011 CollabNet Inc. and Petri Heiramo

Planning Release Content

•  Focus on key features (epics)
•  These act as vision elements for the release

•  Calculate overall expected capacity

•  ”Paint with a large brush”

•  It probably isn’t useful to allocate things to individual sprints

•  Identify key milestones within the release
•  External dependencies (either from or to outside)
•  Internal dependencies between teams
•  These milestones are usually quite fixed

•  Plan buffers and slack to ensure their requirements are
met

Copyright 2011 CollabNet Inc. and Petri Heiramo

Planning the Near Future

•  Usually it is necessary to plan a few sprints ahead at a higher level of
detail

•  Usually 2-3 sprints ahead

•  These plans should already be quite detailed

•  Right sized stories, reliable estimates

•  Still not a commitment to develop specific stories

•  There is still room for change

...

Sprint 1 Sprint 2 Sprint 3 Sprints 4 & 5

Copyright 2011 CollabNet Inc. and Petri Heiramo

Product Burndown Chart

•  Project progress is visualized in the product burndown chart
•  The same chart can provide visual planning feedback

-20

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8

Velocity and Remaining Work

More detail on
burndown charts in
the tracking section.

Copyright 2011 CollabNet Inc. and Petri Heiramo

Planning Sprints

•  Each sprint is planned at the beginning of the sprint
•  Sprint goal
•  Implemented stories
•  Sprint backlog (list of development tasks)

•  Acceptance criterias are agreed

•  Story scope
•  Acceptance tests

Copyright 2011 CollabNet Inc. and Petri Heiramo

Sprint Goal

•  A short statement of what the work will be focused on during
the sprint

Database
Make the application run on
SQLserver in addition to Oracle

Life sciences
Support features necessary for
population genetics studies.

Financial Services
Support more technical indicators
than company ABC with real-
time, streaming data

Content by Martine Devos

Copyright 2011 CollabNet Inc. and Petri Heiramo

Planning Rules

•  Product Owner prioritizes the features

•  Product Owner sets sprint goal

•  The team provides estimates for
•  Story sizes
•  Velocity

•  PO cannot assign more work than what the team estimates it can

commit to
•  Up to velocity normally

•  The customer commits to agreed scope for the duration of the sprint

•  The team will do all it can to deliver the agreed stories

•  The team will maintain the agreed (high) quality

Copyright 2011 CollabNet Inc. and Petri Heiramo

Bugs – How to Plan?

•  Agile teams have the goal to fix bugs IN the iteration they are
discovered

•  Estimates should include that work

•  Automated tests help us getting better at that

•  Defects found later need to be treated the same as user stories – put
on backlog, prioritized, acceptance tested…

•  Merge “Bugzilla”… with new stories and prioritize like all other work

Copyright 2011 CollabNet Inc. and Petri Heiramo

Maintenance?

•  Reduce team capacity by certain amount (e.g. 20%) to account
for time needed

•  Base estimate on history, if possible

•  If you can, arrange a dedicated team or persons
•  Less interruptions, better performance

•  If not, the team can track and manage the support activities
through the daily scrums

•  Or let them plan a better way

Copyright 2011 CollabNet Inc. and Petri Heiramo

Acceptance Tests

•  In optimal case, the customer can deliver acceptance tests for the team
•  Detailed requirements in executable format
•  E.g. Fit/Fitnesse

•  Many projects don’t have such optimal situation

•  Written acceptance tests or test summaries

•  There has to be an agreement how the acceptance testing is arranged
in the project

•  The test criteria are used to evaluate sprint acceptance in the sprint
review meeting

•  Not the only criteria, though

Copyright 2011 CollabNet Inc. and Petri Heiramo

Developing Architecture

•  Architecture and infrastructure are high priority non-functional
requirements

•  Must be completed to prove that functional requirements can be
implemented satisfactorily

•  Every Sprint still must deliver
at least some piece of
business functionality

•  To prove that architecture
or infrastructure works

•  To prove to customer that
work they care about is
taking place

Copyright 1996-2007, ADM, All Rights Reserved v8.1 	

Copyright 2011 CollabNet Inc. and Petri Heiramo

Sprint Backlog

•  Team plans the tasks needed to develop the agreed stories

•  Estimation unit: (ideal) hours

•  Ideal task size: 2 – 10 Ih

•  The team owns the sprint backlog and is free to modify it during the
sprint

•  Add or remove tasks
•  Update task definitions
•  Update estimates

•  The goal is to complete the stories committed to in the sprint, not to

complete tasks

Copyright 2011 CollabNet Inc. and Petri Heiramo

Maintaining the Sprint Backlog

•  The sprint backlog should be updated daily regarding
•  Tasks completed
•  Remaining hours updated
•  New identified tasks added, unnecessary ones removed

•  A logical time for update is before daily scrum

•  Up to date information provided for everyone

•  ScrumMaster updates the sprint burndown chart
•  Preferably daily
•  NOTE: The information is not updated for the SM; the ScrumMaster

merely records down to help the team

•  Remember, sprint backlog is owned by the Team – they can modify it at will

Copyright 2011 CollabNet Inc. and Petri Heiramo

Sprint Burndown Chart

More detail on burndown
charts in the tracking
section.

Copyright 2011 CollabNet Inc. and Petri Heiramo

Realizing Product Backlog

Cross-functional,
collaborative team
effort, coordinated
by continuous
communication

Copyright 2011 CollabNet Inc. and Petri Heiramo

TRACKING

Copyright 2011 CollabNet Inc. and Petri Heiramo

Team Walls

•  A physical team wall, with tasks tracking and ”big visible
charts”, is considered the most effective method for tracking
sprint progress

•  Some colocated teams prefer technical tools, which is
fine

•  Most distributed teams use some kind of computer-
based tool

•  Team’s tool
•  Not ScrumMaster’s, even if he/she helps the team a lot

in maintaining the information on the wall

Copyright 2011 CollabNet Inc. and Petri Heiramo

More Sample Team Walls

Copyright 2011 CollabNet Inc. and Petri Heiramo

Good Burndown?

Probably just trying
to look good
Information hidden

Copyright 2011 CollabNet Inc. and Petri Heiramo

It’s Team’s Responsibility

•  As a ScrumMaster, it is not your responsibility to worry about the burndown
•  If you get nervous, you might ask how the team feels about the

burndown. If they’re cool with it, fine. If they fail to deliver, they will
learn.

•  Provide the information so that the team can make up-to-date interpretations
of their status

•  If the team seems to ignore the burndown and it is a problem, make it
bigger J

•  Seek to provide information that will highlight the areas the team is
having problems with

•  Don’t point the finger at it, just make it visible

•  Help the team carry its responsibility

Copyright 2011 CollabNet Inc. and Petri Heiramo

Exercise: Definition of Done

•  As a group (at each table), discuss
•  What does “done” mean in your current project?’
•  What issues do you see with that definition of done?
•  How would you address them?
•  What engineering problems do you see with that

approach?
•  How would you rectify them?

Copyright 2011 CollabNet Inc. and Petri Heiramo

RTF

•  Running Tested Features is the measure by which project progress is
measured

•  Not: % complete

•  RTF complies with the Definition of Done

•  As the definition improves over the duration of the project, so does the
requirements for past Done stories

•  This may mean that the team has to add stories to the product
backlog to improve the quality or integration of past features

Copyright 2011 CollabNet Inc. and Petri Heiramo

The Scope of ”Done” Changes

Planning

Analysis

Design

Architecture,
Infrastructure

Coding

Testing

Performance

User Acceptance

Pilot

Live

Extend the definition to include all
development activities

Copyright 2011 CollabNet Inc. and Petri Heiramo

Visibility at Daily Level

•  Scrum provides very high visibility into the daily progress as it is those
people who know where they are being responsible for caring where
they are

•  As a ScrumMaster, remember that it is not your responsibility to know
where the team is. If they do, you do, too, but the important bit is that
they do.

•  You measure progress as working features

Copyright 2011 CollabNet Inc. and Petri Heiramo

Visibility at Project Level

•  This level is the domain at which management and PO should
look at

•  At what rate real features are being added to the project
•  The quality of the software stays high

•  It is relatively easy to estimate progress
•  Features are demonstrated in the sprint reviews
•  High test coverage, 100% pass rate, and very low number of

released errors prove quality

•  No need to micromanage

Copyright 2011 CollabNet Inc. and Petri Heiramo

What Kind of Conclusions Can PO Draw?

•  Velocity is increasing
•  The team is picking up speed and things should be

fine
•  Is quality staying high?

•  Velocity is stable

•  Is the team spending enough time on continuous
improvement?

•  Are there unresolved obstacles?

•  Velocity is decreasing
•  Is the quality of the software poor, resulting in

reducing speed?
•  Are the problems/risks the team is not bringing

forward?
•  Are obstacles to productivity not removed?

•  Estimates differ from realized results regularly

•  How and based on what information does the team
make the estimates?

•  Is there something wrong in the team environment?

•  Team is continuously updating estimates
•  This can be a good thing
•  If the direction is continuously the same, maybe there

are some systematic errors that need to be fixed

Avoid suspicion or blame –

open atmosphere builds

trust – trust builds

commitment

Copyright 2011 CollabNet Inc. and Petri Heiramo

Re-estimating Partially Completed Stories?

•  Favour all or nothing
•  Done, full points. Not done, “nuls points”
•  Velocity is lower in first iteration, will then get a bit higher
•  OK, if most interested in average velocity over time

•  Sometimes unfinished part does not get done next iteration

•  Take partial credit and re-estimate the rest
•  Combined size does not need to be equal to original

•  Beware of tiny stories – combine when needed

Copyright 2011 CollabNet Inc. and Petri Heiramo

When to Re-estimate?

•  Whenever the team feels one or more stories are mis-estimated
relative to other stories,

à re-estimate as few stories as possible to bring the relative
estimates back in line

•  As a learning experience for estimating future stories

Copyright 2011 CollabNet Inc. and Petri Heiramo

Quality Indicators

•  Ability to test new stories within the iteration

•  Defect
•  Numbers far smaller
•  Address all hands on deck

•  Progress on test automation

•  Unit test coverage Predictive metrics

Output metrics

Copyright 2011 CollabNet Inc. and Petri Heiramo

Thank you
For more info:

petri.heiramo@gmail.com

Copyright 2011 CollabNet Inc. and Petri Heiramo

