
Agile Coach, CST 

Working with Team 
Petri Heiramo 



Exercise: What to Do? 

You are the ScrumMaster and are heading for the team room. 
The functional analyst runs past you crying and the lead 
engineer runs past you enraged, both on the way to their 
functional managers’ offices. 
 
You go into the team room. You can cut the tension with a 
knife it is so thick. 
 
Apparently, the analyst has been writing specs and giving 
them to the engineers, who then change them as they see fit. 
Anger over this has been building for three weeks. 
 
What do you do? 

Copyright 1993-2007, Jeff Sutherland, v7	



Copyright 2011 CollabNet Inc. and Petri Heiramo 



Exercise: Team Norming 

A team is in its Sprint planning meeting. Half of the team is 
from a technical company that is running the project. The 
other half consists of contractors. 
 
A usability engineer from the technical company demands to 
know how the contractors will ensure adequate user 
interface. A system architect from the technical company 
demands to know how the contractors will follow and not ruin 
the systems architecture they define. 
 
What is wrong here? What do you do? 

Copyright 1993-2007, Jeff Sutherland, v7	



Copyright 2011 CollabNet Inc. and Petri Heiramo 



Exercise:  The Olde Expert 

Before becoming the ScrumMaster, you were a 
technical lead and respected for your design and 
programming skills. 
 
In your new project, the team comes to you for 
advice on a challenging architectural choice. The 
team members have been arguing between two 
approaches, but could not agree which one to 
choose. 
 
They want you to choose the approach. 
 
What do you do? 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Exercise:  Limits of Self-Management? 

You are the ScrumMaster. Everyone on the team 
except John meets with you. They tell you that 
John is not doing his work, is offensive, is difficult 
to work with, and they want you to fix the problem. 
 
What do you do? 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Exercise:  Joint Responsibility 

You are the ScrumMaster at the first Daily Scrum. There are two 
programmers, a tech writer, and two quality assurance people. 
 
The programmers report that they were in a design meeting and will 
continue today. The tech writer says that they are working on the 
table of contents. The quality assurance people report that they are 
setting up the test bed. 
 
You ask the tech writer and QA people why they aren’t in the design 
meeting. They say they weren’t invited. You ask the programmers 
why they weren’t invited. They ask you what possible benefit these 
people would add to design? 
 
What do you do? 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Basic Truths about Team Motivation 

•  People can be most productive when they manage 
themselves 

•  But it requires the right approach 
 

•  People take their commitment more seriously than other 
people’s commitment for them 
 

•  People have many creative moments during downtime 
 

•  Under pressure to “work harder,” developers 
automatically and increasingly reduce quality 

Copyright 1996-2007, ADM, All Rights Reserved v8.1 	



Copyright 2011 CollabNet Inc. and Petri Heiramo 



Can We Affect Motivation? 

•  Motivation is always a person’s internal feeling 
 

•  You can’t ”motivate”, but you  
can help people  
find motivation 
 

•  Avoid killing 
motivation! 

Internal	
  imbalance	
  
-­‐	
  Desire,	
  need	
  for	
  
achievement	
  

Internal	
  	
  
goal-­‐se7ng	
  

Ac9on,	
  
Behavior	
  

Reward,	
  
Achievement	
  

Belief	
  of	
  
achievement	
  

Benefit	
  

Encourage	
  

+ Belief in one’s abilities 
+ Belief in one’s influence on things 

— Unclarity of goal / 
reward 

— No identified 
connection to own 
motivations 

Help	
  to	
  see	
  the	
  
connec9on	
  to	
  own	
  
mo9ves	
  

Introduce	
  an	
  
imbalance	
  

Support	
  

Clarify	
  
objec9ves/
reward	
  

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Social Norms vs. Work Norms 

•  Experiment report: 
•  People in testGroup1 were offered $5.00 to move boxes for 5 minutes. 

They moved 159 boxes on average. 
•  People in testGroup2 offered $0.50; they moved 101 boxes avg. 
•  People in testGroup3 offered no money, but asked to do it "merely" as 

a social request between colleagues. They moved 168 boxes. 
 

•  The point is not that money is not relevant, but that the power of social norms 
(e.g., in a teamwork context) on motivation or behavior is non-trivial -- more than 
some may have anticipated. 
 

•  What happens if you thereafter offer the social-norm people in testGroup3 
money? They flip the context to work norms, and significantly lower output. The 
bloom is off the rose -- and for a long time. If you then again ask them to do the 
task as a social request, the output remains poor -- it's been stickily reframed as a 
work norm context. 
 

•  Example: what happens if you offer $ to kids to read books, after it was previously 
a social norm without reward? 
 

•  Or: 1€ penalty for being late from Daily Scrum vs. be there for others’ sake? 

9  © 2008 Digia Plc 
Copyright 2011 CollabNet Inc. and Petri Heiramo 



When You Don’t Know What to Do 

•  Ask the team! 
 

•  Examples 
•  I noticed <situation> what shall we do? 
•  I observed <situation> is that important? 
•  I feel <feeling> do you share that? 
•  Shall we try to find out why <situation>? 
•  What do you think we should do? 
•  Who has any idea about …? 
•  Is this useful? 
•  What have you decided? 
•  What should I do? 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



When You Do Know What to Do 

•  If it involves the team, ask the team 
•  If you have an idea what a solution could be, you 

might know to ask the right questions 
•  Still, don’t assume your answer is better than the 

team’s answer – don’t force it, accept the team’s 
answer 

•  They are responsible for the work, not you 
•  They are committed to their own decisions, 

not to yours 
•  The team must be allowed to make 

mistakes, otherwise there is no 
empowerment – you will then help them 
learn from them 

•  Are you sure you’re right? J 
 

•  If it involves the PO, ask the PO 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



“The Hardest Part of Being an Agile Project Manager” 

“I've been leading a team of 5 devs, 1 tester, 2 designers, and 1 
customer for the past month or so. During that time, I've learned a 
lot from watching this team grow, in their relationships to each 
other, and in their ability to work together as a team. 
 
What has struck me about this is that all of this happens best if I 
keep my nose out of it. And this is the hardest part for me. 

... 

It is not my job to be a problem solver as many PMs feel is their 
role. It is my job to enable my team to solve problems on their own, 
and to create an environment where they feel safe to do so. This is 
much harder than solving the problems themselves, as I (as do most 
people) have the urge to grab those reins and lead away!” 

– Brian Button ���
(http://www.agileprogrammer.com/oneagilecoder/archive/2007/02/11/22180.aspx)	



Copyright 2011 CollabNet Inc. and Petri Heiramo 



Team vs. Group 

A team comprises a group of people or animals 
linked in a common purpose. Teams are especially 
appropriate for conducting tasks that are high in 
complexity and have many interdependent 
subtasks. 
 
A group in itself does not necessarily constitute a 
team. Teams normally have members with 
complementary skills and generate synergy 
through a coordinated effort which allows each 
member to maximize his or her strengths and 
minimize his or her weaknesses. 

- Wikipedia on ”Team” 
(Highlights are mine) 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Team Formation 

•  Forming – Storming – Norming – Performing 
•  The four stages of team formation, as suggested by Bruce Tuckman, 

1965 
 

•  Forming – Coming together, accepting the goals. Independent behaviour 
 

•  Storming – Different ideas compete, potential conflict 
 

•  Norming – Team members adjust their behaviour to each other, common norms 
for working agreed 
 

•  Performing – Team functions as one unit, heterogenity is a source of creativity 
and strength, hyperproductivity 
 

•  Progress through these phases requires coaching and support (ScrumMaster) 

One goal of Scrum is to 

create hyperproductive 

teams.


Copyright 2011 CollabNet Inc. and Petri Heiramo 



The First Day with the Team 

•  Set aside at least one day when team first gets together 
to form: 

•  Introductions and backgrounds 
•  Team name 
•  Team room and Daily Scrum time/place 
•  Development process for making Product Backlog 

done 
•  Definition of “Done” for Product and Sprint 

Backlog items 
•  Rules of development 
•  Rules of etiquette 
•  Training in conflict resolution 

 
•  In the case of distributed teams, get people to one place 

Copyright 1996-2007, ADM, All Rights Reserved v8.1 	



Copyright 2011 CollabNet Inc. and Petri Heiramo 



Colocation – Team Rooms 

•  Colocation and team rooms are a powerful way to support 
collaboration and communication 

•  Some studies have suggested 100% performance 
improvement from collocation alone 

•  Some other studies have shown, that with right 
arrangements you can have distributed teams with 
equal performance 
 

•  Eliminate communication barriers 
•  Separate rooms, separating walls 

 
•  People should be able to see everyone and the taskboard 

 
•  Enough wallspace for whiteboards, designs, information 

radiators, etc. 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Distributed Team Recommendations 

•  Co-locate team as often as possible, especially at inception and key 
milestones. Rotate members around. 
 

•  Invest in (and plan for) tools that provide a shared environment. Plan to 
experiment. 
 

•  Establish a single global instance of project assets, easily accessible by all. 
 

•  Try virtual team building (team wiki w/bios & photos). 
 

•  Establish known hours, with as much overlap as possible. 
 

•  Apply high cohesion and low coupling to allocation of work to sites. 
 

•  Develop a shared team vocabulary. 
 

•  Don’t let anyone go dark. 
 

•  Apply Scrum-of-Scrums concept when mass remote meetings unproductive. 

Copyright 1993-2007, Jeff Sutherland, v7	



Copyright 2011 CollabNet Inc. and Petri Heiramo 



Requirements in Practice 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Writing User Stories 

•  Standard format: 
<User> can <something> [in order to <purpose>] 
•  Exceptions to the rule can be made, if the clarity 

of the story requires it 
•  Only one user at a time must be able use 

one floating licence 
 

•  A good story is (INVEST) 
•  Independent 
•  Negotiable 
•  Valuable to users or customers 
•  Estimatable 
•  Small 
•  Testable 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Exercise: MyBooks.com website 

•  Vision 
•  MyBooks.com allows internet users to record 

down books they own (”bookshelf”)and share their 
opinions of them. MyBooks.com creates a 
community for discussion, reviews and feedback. 
The site attempts to give a rich functionality 
  

•  User classes 
•  Shelf owner – Someone who has recorded at 

least one book in the system and is maintaining 
their own bookshelf 

•  Visitor – Someone who is viewing other people’s 
bookshelves 

•  Admin – Maintainer of the MyBooks.com site 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Exercise: Bookstore.com Website 

•  As a team, brainstorm functionality for the website 
•  Aim for at least 15-20 stories 
•  Get wild with the ideas J 

 
•  Write down the stories on index cards 

•  Reserve space in the corners 
•  One story per card 

 
•  15 minutes 

<User> can <something> [in 
order to <purpose>] 
 
- Short comments, if any 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Independent 

•  For example, non-independent: 
•  A customer can pay with Visa 
•  A customer can pay with MasterCard 
•  A customer can pay with American Express 

 
•  First implemented user story might take three days, the other 

two one day each 
•  How do you assign estimates on the stories? 

 
•  Work-arounds: 

•  Combine into one larger user story 
•  A customer can pay with credit card [5 days] 

•  Find a different way of writing the user stories 
•  A customer can pay with one type of credit card 

(Visa, MasterCard or American Express) [3 days] 
•  A customer can pay with two other types of credit 

card [2 days] 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Negotiable 

•  In order to be effective, the details of the user story must be 
negotiable between the customer and the team 
 

•  Stories are reminders of the conversation 
•  Keep the detail at discussion level for cost 

effectiveness 
 

•  Too much detail gives an impression of completeness 
•  There is always too much detail to write everything 
•  Impression of completeness leads to people not 

thinking 
•  Stupid mistakes just because ”it wasn’t written on 

the card” 
 

•  Include key details and open items as ”confirmation”, i.e. key 
acceptance test 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Valuable to Users and Customer 

•  Each user story should have at least one user or 
stakeholder who finds it valuable to them 

•  Make the interested party clear in the user story 
•  Avoid stories where interested party is the 

development team 
 

•  If you have a user story that is very difficult to write in the 
standard format, consider the entire validity of the user 
story 

•  Is it a general quality requirement and better put 
in Definition of Done? 
 

•  The best way to ensure valuability is to have the 
customer write the user stories 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Estimatable 

•  Three common reasons why a story may not be estimatable 
•  Developers lack domain knowledge 
•  Developers lack technical knowledge 
•  The story is too big 

 
•  Lacking domain knowledge can be compensated for by having the 

customer or users explain the story 
•  Not necessary to go through all details 

 
•  Technical knowledge can be generated through ”spikes” [XP term] 

•  Brief experiment on the technology in the domain 
•  Split to two stories: the spike and the real work 

 
•  Too large stories can be split to smaller stories 

•  If the team doesn’t know how, do a spike 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Small 

•  Too large stories are difficult to define and understand in 
sufficient detail 

•  Differing priorities within the story 
•  Does not fit into sprints 
•  Difficult to estimate 
•  Too much to remember from a single description 

 
•  Large stories are split to smaller ones until they feel 

comfortable for the team 
 

•  A user story can also be too small 
•  Threat of micromanagement and planning overhead 
•  Combine into aggregate stories 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Testable 

•  Stories that cannot be tested cannot be proven to be successfully 
developed (or regression tested) 

•  The application will be easy to use 
•  The application responds quickly to user actions 

 
•  Untestable stories are typically linked to non-functional requirements 

 
•  Aim for automation 

•  Strive for 99%, not 10% 
•  Some stories are not automatable, but can be tested 

•  95% of novice users can send a message in less than 
5 minutes  

•  Automation provides clear yes/no answer and are powerful in 
regression testing 
 

•  Improving testability 
•  Define concrete values and activities 
•  Never say ”never” – impossible to prove 

•  Instead, it is possible to show that something is rare 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Splitting Stories 

•  Large stories (often epics) typically fall into two categories 
•  Compound stories 
•  Complex stories 

 
•  Compound epics consist of multiple smaller stories 

•  Usually easy to split up 
 

•  Complex epics are harder to split 
•  Often one very large feature or goal, e.g. 

•  Complex algorithms, porting, etc. 
•  Often research (spikes) are needed to find working substory 

structure 
•  The inability to split often indicates insufficient 

understanding of the features 
•  May require stubbing parts of the system 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Split Stories Along... 

•  Operational boundaries 
•  Subfeatures, operations (CRUD, ...), exceptional 

cases, error conditions, ... 
 

•  Data sets 
•  Text / music / images / video, different types of 

invoices, message types, different statuses, ... 
 

•  Technology 
•  Platform versions, hardware versions, 

protocols, ... 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Combining Stories 

•  Sometimes the stories go too small for 
meaningful release planning 

•  Very small user stories 
•  Errors 

 

•  Combine several stories to one story for 
estimation purposes 

•  Give one estimate of size 
•  Allocate to one sprint for implementation 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Exercise: Refactoring PBL 

•  As a group, go through your identified user 
stories for MyBooks.com and evaluate them in 
the light of INVEST 
 

•  Refactor the stories you feel could use an 
improvement 
 

•  Split and combine stories, if you feel it’s 
appropriate. Split up stories that are obviously 
too large for estimation and planning 

Copyright 2011 CollabNet Inc. and Petri Heiramo 



Thank you 
For more info: 

petri.heiramo@gmail.com 

Copyright 2011 CollabNet Inc. and Petri Heiramo 


