
Agile Coach, CST

Agile Thinking - Introduction
Petri Heiramo

What is Important in Agile?

• Values
•  Principles
•  Practices
•  Rules

It is important to know why things work so that
we do not sabotage them (by accident).

Copyright 2011 CollabNet Inc. and Petri Heiramo

3 	
 ©2005	
 SysOpen	
 Digia	
 Plc	
 	
 Company	
 Confiden:al	
 Copyright 2011 CollabNet Inc. and Petri Heiramo

Agile Principles 1/2

Our highest priority is to satisfy the
customer through early and

continuous delivery of valuable
software.

Welcome changing requirements,
even late in development. Agile

processes harness change for the
customer's competitive advantage.

Deliver working software frequently,

from a couple of weeks to a couple of
months, with a preference to the

shorter timescale.

Business people and developers
must work together daily throughout

the project.

Build projects around motivated
individuals. Give them the

environment and support they need,
and trust them to get the job done.

The most efficient and effective

method of conveying information to
and within a development team is

face-to-face conversation.

Copyright 2011 CollabNet Inc. and Petri Heiramo

Agile Principles 2/2

Working software is the primary
measure of progress.

Agile processes promote sustainable

development. The sponsors,
developers, and users should be able

to maintain a constant pace
indefinitely.

Continuous attention to technical

excellence and good design
enhances agility.

Simplicity – the art of maximizing the
amount of work not done –

is essential.

The best architectures, requirements,
and designs emerge from self-

organizing teams.

At regular intervals, the team reflects
on how to become more effective,
then tunes and adjusts its behavior

accordingly.

Copyright 2011 CollabNet Inc. and Petri Heiramo

History of Agile

Copyright 2011 CollabNet Inc. and Petri Heiramo

Copyright 1993-2007, Jeff Sutherland, v7	

Copyright 2011 CollabNet Inc. and Petri Heiramo

Iterative

•  Plans based on previous iterations
•  What did we learn?
•  How have requirements changed since last iteration?

•  Development process is adapted based on feedback

•  Practices, tools, communications, ...

Iterative approach allows continuous refinement and change without imposing heavy change processes

© Craig Larman, 2007	

Copyright 2011 CollabNet Inc. and Petri Heiramo

Playing Golf?

?

Copyright 2011 CollabNet Inc. and Petri Heiramo

Incremental

•  Each increment expands and extends functionality developed in
the previous iteration

•  Each increment delivers fully working functionality
•  Do not build castles on quicksand

•  Functionality-driven requirements definition

•  Allows delivering complete user stories from each
increment

•  Functionality must be split small enough to fit in one
increment

•  Incremental allows safe implementation as additional
functionality is always built on top of working code

Copyright 2011 CollabNet Inc. and Petri Heiramo

The best bang-per-buck
risk mitigation strategy
we know is incremental
delivery

- Tom DeMarco, 2003

Copyright 2011 CollabNet Inc. and Petri Heiramo

Risk and Value Driven

•  Focus on reducing risk in early iterations
•  Technical risk, e.g. performance, new technology...
•  Business risk, e.g. key business functionality,

usability...
•  Architectural coverage, i.e. cover all key components

with early features

•  Prioritize features based on business value
•  Initially focus only on the most important ones
•  Focus on key functionality in each feature
•  Get early versions out to users to prove business value

and gather feedback

Copyright 2011 CollabNet Inc. and Petri Heiramo

Time-Boxed

•  Never extend iteration length to fit scope during sprint
•  Adapt scope

•  Try to keep a regular iteration length

•  Needed for velocity, estimation and planning

•  During sprints, time, cost and quality are fixed
•  Features are the only flexible variable

•  Also time-box releases

•  Communication with stakeholders and users
•  Prioritization of features

Copyright 2011 CollabNet Inc. and Petri Heiramo

People and Communication Driven

•  Empower people and teams
•  Commitment and motivation
•  Decisions are made where the work is done

•  Best expertise to make them

•  Facilitate communications-rich environment
•  Enable and encourage direct point-to-point and open many-to-

many communication
•  Information radiators
•  Group collaboration techniques
•  Feedback and discussion

PO

SM

Team

Copyright 2011 CollabNet Inc. and Petri Heiramo

Exercise: Command and Control

1.  Form pairs.

2.  Assign one person the boss, the other is the worker.

3.  The boss can give the following commands:
•  Go, Stop, Right, Left, Faster, Slower

4.  The worker must follow the boss’s commands.

5.  The boss is responsible for having the worker proceed 60

normal paces (calculated by the boss) within two minutes, from
the time “go” is said, until “stop” is said, by the moderator.

6.  The boss can command the worker but not touch the worker.

15 	

© 2008 Digia Plc	

Copyright 2011 CollabNet Inc. and Petri Heiramo

Exercise: Self-Management

•  The same exercise as the first one, except now the
workers have the authority to decide how they will move.
The boss provides support by calculating the paces
taken.

•  Each worker proceeds 60 normal paces within two
minutes, from the time “go” is said, until “stop” is said,
by the moderator.

16 	

© 2008 Digia Plc	

Copyright 2011 CollabNet Inc. and Petri Heiramo

Feature Teams

•  Traditional common approaches
•  Component teams, e.g. UI team, database team,

engine team, ...
•  Functional teams, e.g. architecture team, development

team, testing team, ...

•  In this context,
•  Feature != subsystem, module, layer or component
•  Feature == customer-centric functionality

•  Feature teams are customer needs driven

•  Multidiscipline, since building a full feature will require
competences from many areas

•  Responsible for delivering all aspects of a feature
•  Minimizes the waste in hand-offs and context switches
•  The team sees the whole à Quality

Copyright 2011 CollabNet Inc. and Petri Heiramo

Seeing Waste

•  Understanding and seeing
waste is the first step to
eliminating it

•  Introduced by Lean in
manufacturing environment

•  Translated to software
development by Tom &
Mary Poppendieck 1)

•  ”Maximizing work not done” &
”Penny saved is a penny
earned”

•  Most effective way to
improve efficiency is to
stop doing useless
activities

Waste in Software
Development

•  Unnecessary
Requirements & Gold-plating

•  Work in Progress

•  Extra Steps

•  Finding Information

•  Defects Not Caught
by Tests

•  Waiting, Including Customers

•  Handoffs

1) http://www.poppendieck.com/papers/LeanThinking.pdf

Copyright 2011 CollabNet Inc. and Petri Heiramo

Eliminating Unnecessary Features

Use feedback to find
and focus on these

Use prioritization
to not do these

Copyright 2011 CollabNet Inc. and Petri Heiramo

Reducing Waste in Task Switching

•  In Quality Software Management: Systems Thinking, Gerald
Weinberg proposed a rule of thumb to calculate the waste
caused by project switching:

http://www.codinghorror.com/blog/archives/000691.html	

This also applies to

tasks in sprints, to a

degree at least

Copyright 2011 CollabNet Inc. and Petri Heiramo

Small Batches and Low Cycle Time

•  Queuing theory shows that best throughput (== productivity)
can be achieved when small batches travel quickly through the
system

•  Large features are split to smaller subfeatures
•  Always completeable in one iteration

•  Iterations are short

•  Maximum cycle time equals iteration length

•  Development tasks are small and the different activities
(specification, design, coding, testing, etc.) should be
performed concurrently

•  Minimizes throughput time and ensures that each ”step”
has a very small ”batch” to work on

Copyright 2011 CollabNet Inc. and Petri Heiramo

Optimized Value (ROI)

€	

Time	

Planned scope 100%

Planne
d

release

Value
generated

+

–

Copyright 2011 CollabNet Inc. and Petri Heiramo

What If… Traditional Challenge

€	

Time	

Planned scope 100%

Planne
d

release

90%

The real
cost of
poor
quality

Realized
release

+

–

Real testing starts
here. This is where
the project realizes its
real status (i.e. it isn’t
90% ready).

Copyright 2011 CollabNet Inc. and Petri Heiramo

What If… Agile Opportunity #1

€	

Time	

Planned scope 100%

Planne
d

release

80%
Gained
value

Release
to 100%

+

–

Even if we assume
that progress isn’t
as good as
originally planned…

… it’s still real
progress and we have
the ability to release
partial releases with
most valuable
features.

And because we were
able to improve
requirements through
feedback, we were
able to create a more
valuable system.

Copyright 2011 CollabNet Inc. and Petri Heiramo

What If… Agile Opportunity #2

€	

Time	

Planned scope 100%

Planne
d

release

60%

Gained
value

Release
to 100%

+

–

… Or if we can find a
way to release at
60%, we can gain
from early release.

Copyright 2011 CollabNet Inc. and Petri Heiramo

Obviously, …

•  Measuring and estimating value is difficult
•  Diagrams like these I drew are very difficult in real life
•  Different business benefits behave differently

•  Just remember: success and value cannot be managed

through costs

Copyright 2011 CollabNet Inc. and Petri Heiramo

What Maximizes Value?

•  User research and business analysis

•  Competence and motivation of the people involved

•  Amount of knowledge generated
•  Highly related with the amount

of communication

•  Ability to incorporate improvements
•  Highly related with technical quality of the system

Copyright 2011 CollabNet Inc. and Petri Heiramo

Key Challenges

•  Agility and Scrum is hard
•  Take it seriously, embrace its values, do also the hard

stuff, play by the rules

•  Knowing your customers’ and users’ real needs is hard
•  Understand what is valuable, then prioritize

•  Getting the right people involved is hard

•  Get them to spend enough time with the project
•  Find the right suppliers

Copyright 2011 CollabNet Inc. and Petri Heiramo

Why Does It Work?

Copyright 2011 CollabNet Inc. and Petri Heiramo

Predictable Manufacturing New Product Development

It is possible to first complete
specifications, and then build.

Rarely possible to create up-front
unchanging and detailed specs.

Near the start, one can reliably
estimate effort and cost.

Near the beginning, it is not possible.
As empirical data emerge, it becomes
increasingly possible to plan and
estimate.

It is possible to identify, define,
schedule, and order all the detailed
activities.

Near the beginning, it is not possible.
Adaptive steps driven by build-
feedback cycles are required.

Adaptation to unpredictable change
is not the norm, and change-rates
are relatively low.

Creative adaptation to unpredictable
change is the norm. Change rates
are high.

Empirical

process

Defined
process

Two Process Worlds

E.g. software engineering
E.g. phone manufacturing

Copyright 2011 CollabNet Inc. and Petri Heiramo

Waterfall

Study – Plan – Act

Waterfall model is
fundamentally not
suitable for software
development

Iterative

Try – Observe – Adjust

Why Is Waterfall So Prevalent, Then?

•  A historical accident?
•  There is no scientific evidence that waterfall works, and there never was

•  CHAOS report 1995
•  31% of projects cancelled before completion
•  53% ran an average of +89% cost overrun

•  The original author was misunderstood
•  Winston Royce was, in fact, a proponent of iterative development

•  Waterfall works only in the simplest of cases, and even then, do
it twice

•  The waterfall model was chosen for DOD-STD-2167
•  Even USA Department of Defence never succeeded with the model

•  75% failed or were never used, only 2% were used without
extensive modification

•  The DoD model was adopted in many other international standards
•  The DoD standard was later changed to support iterative, but the

damage was done
•  The author of that standard would’ve chosen otherwise, given the

chance to correct that mistake

•  A lot of successful iterative development in 50’s – 70’s

•  There is a culture of up-front, inflexible budgeting

Copyright 2011 CollabNet Inc. and Petri Heiramo

Complexity

People

add another level of complexity

R
eq

ui
re

m
en

ts
	

Technology	

Source:	
 Strategic	
 Management	
 and	

Organiza0onal	
 Dynamics	
 by	
 Ralph	
 Stacey	

in	
 Agile	
 So7ware	
 Development	
 with	

Scrum	
 by	
 Ken	
 Schwaber	
 and	
 Mike	
 Beedle.	

Copyright 2011 CollabNet Inc. and Petri Heiramo

Cause & Effect (Causality)

Complex

Retrospective coherence

- software development

Complicated

Knowable causality

- traditional engineering

Chaotic

No causality

Simple

Known causality

Copyright 2011 CollabNet Inc. and Petri Heiramo

Managing Complexity

Source: Strategic Management and Organizational Dynamics
by Ralph Stacey	

Copied from http://www.siliconyogi.com/andreas/
it_professional/sol/complexsystems/StaceyMatrix.html	

Copyright 2011 CollabNet Inc. and Petri Heiramo

Behavior Models on a Project

Copyright Martine Devos 2007	

Copyright 2011 CollabNet Inc. and Petri Heiramo

Lost Year or 90% Syndrome

Fraction
Complete

Time

.5

1

Typical
Plan

Copyright Martine Devos 2007	

Failure to consider
rework

Copyright 2011 CollabNet Inc. and Petri Heiramo

The question is not

“Are we Agile?”

The question is
“Are we delivering

business value efficiently?”

Agility is a means to an end.

Copyright 2011 CollabNet Inc. and Petri Heiramo

Questions?

Copyright 2011 CollabNet Inc. and Petri Heiramo

